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The precise definition of limit given on page 50 in section 1.8 was developed over hundreds of years. It is
therefore no surprise that students often have difficulties quickly mastering the definition and how to use it.
The following remarks and examples are meant to serve as a guide as you learn to use use the definition to
write your own εδ-proofs. Please be aware as you study this that styles in proof writing vary greatly, and
no two people will ever write the exact same proof. However, the logical structure of any two proofs (of the
same result) should be more or less the same. In the present setting, you must demonstrate, usually through
a series of algebraic steps, that the implication in the definition holds. In an εδ-proof, you must first do some
calculations to find the number δ, but these calculations are not part of the proof. Instead, the proof consists
of specifying a value for δ in terms of ε and showing that the implication in the limit definition holds for this
value of δ. Let’s begin by making a few remarks about absolute value.

Absolute Value. First recall that if x is a real number, the absolute value of x is the distance from x to 0
and is written |x|. Said another way, we can define

|x| =
{

x if x ≥ 0;
−x if x < 0.

Therefore, if c is any real number, we have

|x− c| =
{

x− c if x ≥ c;
c− x if x < c

so that it is natural (and useful) to think of |x− c| as the distance from x to c. Two important equivalences
involving absolute value are

|x− c| < δ ⇐⇒ −δ < x− c < δ ⇐⇒ c− δ < x < c + δ

where the symbol ⇐⇒ means “is equivalent to”. In words, these equivalences say that x is less than δ units
from c if and only if the difference x− c is between −δ and δ if and only if x is in the interval (c− δ, c + δ).
Draw a picture!

The Definition. Let us state the definition of limit, first informally and then precisely.

Definition (informal). If f(x) is a function defined for all values of x near x = c, except perhaps at
x = c, and if L is a real number such that the values of f(x) get closer and closer to L as the values of
x are taken closer and closer to c, then we say L is the limit of f(x) as x approaches c and we write

lim
x→c

f(x) = L.

To transform this intuitive idea into a precise definition, we need to say exactly what we mean by “ f(x)
gets closer and closer to L as the values of x are taken closer and closer to c”. The main idea is to notice
that if two quantities are getting “closer and closer”, then the distance between them is becoming “smaller
and smaller”. That is, the distance is eventually smaller than any specified positive number. Note that there
is an implication in this informal definition. Namely it says if we allow x to become closer and closer to c,
then f(x) will become closer and closer to L. When we write a proof, we show that by taking x sufficiently
close to c, we make f(x) arbitrarily close to L. However, before we can demonstrate the implication in the



The Precise Definition of Limit page 2

definition, we need to know how close to c is sufficiently close; that is we need to find δ. Now let us state
the precise definition.

Definition. Suppose that c and L are real numbers and f(x) is a function defined in an open interval
containing c, except perhaps at x = c. If for every positive number ε > 0, there exists a positive number
δ > 0 (which depends on ε) such that

0 < |x− c| < δ implies |f(x)− L| < ε,

then we say that L is the limit of f(x) as x approaches c and we write

lim
x→c

f(x) = L.

Examples. Now we will write a few proofs to guide you in your own writing. To emphasize the logical
structure of the proof, we will not show how we found our δ in the first two examples.

Example 1. Show that lim
x→2

(3x− 5) = 1.

Proof. Let ε > 0 and define δ = ε/3. Then if 0 < |x− 2| < δ, we have

|(3x− 5)− 1| = |3x− 6|
= 3|x− 2|
< 3(ε/3) (since |x− 2| < δ and δ = ε/3)

= ε.

Therefore we have shown

0 < |x− 2| < δ implies |(3x− 5)− 1| < ε,

which shows lim
x→2

(3x− 5) = 1 by definition.

Example 2. Show that lim
x→4

(7x− 1) = 27.

Proof. Let ε > 0 and define δ = ε/7. Then if 0 < |x− 4| < δ, we have

|(7x− 1)− 27| = |7x− 28|
= 7|x− 4|
< 7(ε/7) (since |x− 4| < δ and δ = ε/7)

= ε.

Therefore we have shown

0 < |x− 4| < δ implies |(7x− 1)− 27| < ε,

which shows lim
x→4

(7x− 1) = 27 by definition.

Each of these examples is a complete proof. However, the question of how we chose the values of δ is
unanswered by the proof itself. In fact, some “scratch work” was done before the proof was written. Let’s
look at the scratch work now.
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Scratch work for Example 1. We want |(3x− 5)− 1| < ε when 0 < |x− 2| < δ. We solve the inequality
|(3x− 5)− 1| < ε for |x− 2|:

|(3x− 5)− 1| < ε ⇐⇒ |3x− 6| < ε ⇐⇒ 3|x− 2| < ε ⇐⇒ |x− 2| < ε/3.

The last inequality shows that we should take δ = ε/3 since each step in solving for |x− 2| is reversible.

Scratch work for Example 2. We want |(7x− 1)− 27| < ε when 0 < |x− 4| < δ. We solve the inequality
|(7x− 1)− 27| < ε for |x− 4|:

|(7x− 1)− 27| < ε ⇐⇒ |7x− 28| < ε ⇐⇒ 7|x− 4| < ε ⇐⇒ |x− 4| < ε/7.

The last inequality shows that we should take δ = ε/7 since each step in solving for |x− 4| is reversible.

If the function f(x) is a polynomial of degree n > 1, it is often necessary to “condition twice on δ”. That is,
when performing the algebra involved in the scratch work, we will need to restrict x to bound any extraneous
terms in our inequalities. Restricting x is equivalent to keeping it within a certain distance of c, which is
again equivalent to choosing a value for δ. Let us make this situation more concrete by way of a specific
example. This time, we’ll reveal the scratch work before we write the formal proof.

Example 3. Show that lim
x→5

x2 = 25.

Scratch work. We want |x2 − 25| < ε when 0 < |x − 5| < δ. We try to solve the inequality |x2 − 25| < ε

for |x− 5|:
|x2 − 25| < ε ⇐⇒ |x− 5||x + 5| < ε ⇐⇒ |x− 5| < ε/|x + 5|. (1)

This situation differs from Examples 1 and 2 in that we want to define δ = ε/|x + 5|, but we cannot since
δ is supposed to be a number depending only on ε, not a function of x. Here is one way to get around this
difficulty: we will replace |x + 5| in (1) by a number M which satisfies |x + 5| ≤ M . In so doing, we rewrite
(1) as

|x2 − 25| < ε ⇐⇒ |x− 5||x + 5| < ε ⇐⇒ |x− 5|M < ε ⇐⇒ |x− 5| < ε/M (2)

and proceed as before taking δ = ε/M . There is a problem here as well. Namely, there is no number M that
satisfies |x + 5| ≤ M for all real numbers x. But we are not interested in all real numbers x, only those close
to c = 5. How close? Well, it doesn’t matter! We just want to bound |x + 5| by restricting x near 5, and
any restriction will do. For example, if we require 0 < |x− 5| < 1 (that is x should be less than 1 unit away
from 5 or, equivalently δ = 1), then we have

|x− 5| < 1 ⇐⇒ −1 < x− 5 < 1 ⇐⇒ 9 < x + 5 < 11

so that we can take M = 11. Now referring back to (2), we should let δ = ε/11. Remember that we also need
|x− 5| < 1 so that if we define δ = min{1, ε/11}, then 0 < |x− 5| < δ implies |x− 5| < 1 and |x− 5| < ε/11.
We can now write the formal proof. Note how much more explanation is present in the scratch work than
in the formal proof.

Proof (of Example 3.) Let ε > 0 and define δ = min{1, ε/11}. Then if 0 < |x− 5| < δ, we have

|x2 − 25| = |x + 5||x− 5|
< 11|x− 5| (since |x− 5| < δ and δ ≤ 1)

< 11(ε/11) (since |x− 5| < δ and δ ≤ ε/11)

= ε.

Therefore we have shown
0 < |x− 5| < δ implies |x2 − 25| < ε,

which shows lim
x→5

x2 = 25 by definition.
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Here is one more example, and this time we’ll leave the scratch work to the reader. In fact, we suggest
that you first do your own scratch work and write your own proof. After this, compare your work to the
proof below. Remember, it is unlikely that two proofs will read exactly the same, you need only verify the
implication in the definition with your (deduced) value of δ.

Example 4. Show that lim
x→4

(2x2 − x + 3) = 31.

Proof. Let ε > 0 and define δ = min{1, ε/17}. Then if 0 < |x− 4| < δ, we have

|(2x2 − x + 3)− 31| = |2x2 − x− 28|
= |2x + 7||x− 4|
< 17|x− 4| (since |x− 4| < δ and δ ≤ 1)

< 17(ε/17) (since |x− 4| < δ and δ ≤ ε/17)

= ε.

Therefore we have shown

0 < |x− 4| < δ implies |(2x2 − x + 3)− 31| < ε,

which shows lim
x→4

(2x2 − x + 3) = 31 by definition.

We will close by giving an example that illustrates the algebra involved when dealing with a rational function.
Once again, we’ll first show our scratch work involved in finding δ and then write a formal proof.

Example 5. Show that lim
x→3

1
x + 1

=
1
4
.

Scratch work. This time, we want |1/(x + 1) − 1/4| < ε when 0 < |x − 3| < δ. Let’s try to solve the
inequality |1/(x + 1)− 1/4| < ε for |x− 3|:∣∣∣∣ 1

x + 1
− 1

4

∣∣∣∣ < ε ⇐⇒
∣∣∣∣4− x− 1

(x + 1)4

∣∣∣∣ < ε ⇐⇒
∣∣∣∣ 3− x

(x + 1)4

∣∣∣∣ < ε ⇐⇒ |x− 3|
|x + 1|

< 4ε. (3)

Just like in Example 3, we want to find a number M such that

1
|x + 1|

≤ M

so that we can replace 1/|x + 1| in (3) with M and proceed to take δ = 4ε/M . Again, there is no M such
that 1/|x + 1| ≤ M for all x, but if |x− 3| < 1 (i.e. if δ = 1), then you can show that 3 < x + 1 < 5 so that
1/|x + 1| ≤ 1/3. Therefore we set M = 1/3 and define δ = min{1, 12ε}. It remains to write the proof.

Proof (of Example 5.) Let ε > 0 and define δ = min{1, 12ε}. Then if 0 < |x− 3| < δ, we have∣∣∣∣ 1
x + 1

− 1
4

∣∣∣∣ =
∣∣∣∣4− x− 1

(x + 1)4

∣∣∣∣
=

|x− 3|
|x + 1|4

<

(
1
3

)
|x− 3|

4
(since |x− 3| < δ and δ ≤ 1)

<
1
12

12ε (since |x− 3| < δ and δ ≤ 12ε)

= ε.
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Therefore we have shown

0 < |x− 3| < δ implies
∣∣∣∣ 1
x + 1

− 1
4

∣∣∣∣ < ε,

which shows lim
x→3

[1/(x + 1)] = 1/4 by definition.

Exercise 1. Show that lim
x→3

(2x− 1) = 5.

Exercise 2. Show that lim
x→0

(x + 7) = 7.

Exercise 3. Show that lim
x→−1

(3x + 2) = −1.

Exercise 4. Show that lim
x→2

(x2 + x) = 6.

Exercise 5. Show that lim
x→1

(x2 + 3x + 2) = 6.


